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Models Good at Realizing External-Forcing Related Predictability
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..., but Models are Bad at Predictions of Natural Variability
b) CanCM4
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(From Kim et al., 2012)
Initialized Predictions of Various Qols in Various Models (Surface
Temperature in CanCM4 and CNRM) Display a Jump Behavior



Difficulty with Predicting Natural Variability: Model Bias
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» Predictability studies are
conducted in perfect model
settings

» However all climate models
are imperfect (have biases)

> Extremely difficult to
model the exact balance
(small residual) of myriad
(large) processes that lead
to the mean state of the
climate system and modes
of variability

Small difference between
large numbers

Nadiga et al. "Enhancing skill of initialized decadal predictions using a
dynamic model of drift." Geophysical Research Letters 46.16 (2019)



Reduced Order Dynamical Systems and Predictability

» Model order reduction is a necessity to study predictability

>

The actual climate system or its surrogates—comprehensive
climate models—are too complicated

Interactions span many orders of magnitude

Direct studies are too resource intensive,

both computationally and otherwise

Linear Inverse Modeling (LIM) approach

Captures a few essential interactions between dynamical
components of the full system

Has provided valuable insights into behavior of full system
Has been suggested that it captures the bulk if not all of the
predictable response in certain systems

Has basis in fluctuation-dissipation theorem

of statistical mechanics

Arises in the context of spectral analysis of the

Koopman operator (cf. Dynamic Mode Decomposition)



- Methods and Architectures

» Classical Statistical Methods (e.g., Linear Inverse Modeling)
» Advanced Statistical Mechanical Methods (e.g., Mori-Zwanzig

formalism for memory)

» Deep Learning: MLP, LSTM, PCA-LSTM, convLSTM,

Attention, Transformer, Reservoir Computing, etc.

Reservoir Computing Il
RNN weights are constant; only output layer is trained using linear regression
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When system is fully observed, RC learns the L63 attractor

and predicts for insane lengths of time
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Prediction Lead Time (Lyapunov time)

Right: All ensemble members




With partial obs. predictions good for much shorter periods
Top: Learning with X only (Y only is similar). Bottom: Learning with Z only
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Prediction of SST in the North Atlantic

10 year average based Potential Predictability

t -

Potential Predictability as the ratio of variances of N-year average
and 1-year average of SST



Predicting Evolution of Internal Variability
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Green: Truth; Dashed Blue: Linear Inverse Modeling; Dashed Orange: ensemble-mean of ML-based model
Thin Orange: individual members of ML-based ensemble



Reservoir Computing vs. Linear Inverse Modeling
Learning from Long Runs of Data. 800 years split 80:20
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Reservoir Computing vs. Linear Inverse Modeling
Learning from Limited Data. 13 year segments split as 88:12
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Normalized RMSE (Lower values = Higher skill)
RC Vastly OutPerforms LIM



Normalized RMSE
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Summary and Future Work

» Currently LIMs are the main reduced order dynamics
workhorse for predictability studies

» What do data driven methods have to offer in this setting?

» Reservoir Computing based prediction system developed for an
Earth System Model (Think weighted sum and nonlinearity)

» RC vastly outperforms LIM

» The system and the predictions need to be analyzed to
identify predictable patterns and establish predictability

» Application to observations and CMIP

» Predictability studies conducted in perfect model settings
suggest that predictability extends to the decadal timescale

» |n reality, however predictive skill vanishes much much faster.
How much can we expect ML to improve skill?



